Brief Intro to Tkinter Ul

This document provides some basic concepts about Python’s Tkinter package for GUI creation.

Tkinter is Python’s de-facto way to create Graphical User Interfaces (GUIs) using the Tk GUI
toolkit. Understanding all the mechanisms is beyond the scope of this document (and course)
but here we cover the basic concepts to get you started and apply to other GUI frameworks.
These concepts include: installing Tkinter, creating widgets, putting things together, and making
the interface interactive.

Installing Tkinter
This is the easy part. When you install Python 3.1 or above (using the binary installer) from
https://python.org, Tkinter comes with its standard library. You’ll have to do some extra work if

you want to compile Python yourself, but this is beyond this document.

To actually use Tkinter, you’ll have to import the package. The most common way is to do this:

from tkinter import * # lets you use everything in tkinter directly
from tkinter import ttk # lets you use some new widgets under the ttk package

Creating Widgets
Widgets are Ul components that you add to the GUI. Some of them are easily recognizable and
interactive like buttons and entries, some are more subtle like labels and frames.

|http:_a‘_a’wmm.tkdu:ucs.cnm | Your Name: ’

Cancel

i.;\é Pretty Picture.
Print Guelph Marne must not be blank.
Buttons Entries Labels Frames

Looks might be slightly different across OSs and versions.
Source: https://tkdocs.com/tutorial/widgets.html

The general code to create a widget is to either call the corresponding class creation function
from tkinter (just the function name) or from ttk (function with the ttk. prefix):

button = ttk.Button(<parent>, text="OK", command=<callback>) # a button
entry_text = StringVar() # part of entry creation

entry = ttk.Entry(<parent>, textvariable=entry text) # an entry

label = ttk.Label(<parent>, text="input:") # a label

frame = ttk.Frame(<parent>) # a frame (usually to hold other widgets)

Version 1 Page 1 of 5 © Victor Cheung, 2024

https://python.org/
https://tkdocs.com/tutorial/widgets.html

There are different ways to call these functions (using different arguments) to control various
characteristics of the widget (e.g., to use image or text on a button/label), partly depending on
which widget it is. However, one argument that is necessary in all cases is the <parent>, which
basically means where does this widget belong to — every widget needs to belong to something,
as explained in the next section.

Once your widget is created, you can call its .configure() method to customize it further. For
example, if later you want to change the text attribute of the button you created previously to
"OKAY", you can do this:

the widget called button is created above
button.configure(text="0KAY")
button["text"] = "OKAY" # this is another way

Different widgets have different attributes to be customized. Refer to the widget’s reference
manual for details: https://tcl.tk/man/tcl8.6/TkCmd/ttk button.htm (go up one level to see that
for other widgets). Conversely, you can retrieve the current value of an attribute using the .cget()

method (some might only be available via the .winfo_<attributeName>() method).

Text and Images

Sometimes you might want to access the text attribute of a widget to either set or query it.
Tkinter provides a way for your widget to “monitor” a variable so anytime this variable changes
the widget’s text will also change. This is done by creating and setting a StringVar instance:

the widget entry and the StringVar entry_text are created above
print(entry text) # prints the current text used by entry
entry text.set("Input text here") # text of entry will be updated

Tkinter uses Photolmage to represent an image file store in your computer. To show it in the UI,
a Canvas widget is needed to hold it. The following code shows the process of creating a Canvas
widget, loading an image file, resizing the widget, and making it hold the image:

canvas = Canvas(<parent>, width=640, heigh=480, background="gray75")

my_image = PhotoImage(file="image.png") # load an image file called image.png
canvas.configure(width=my image.width(), height=my_ image.height())
canvas.create_image(0, 9, image=my_image, anchor="nw") # place image at 0, ©

You can call .create_image() again to hold another Photolmage. Currently, Photolmage is limited
to only a few image formats including PNG, GIF, and PPM/PNM. You’ll need a Tk extension
library called Img, or a made-for-Python image library called PIL to accept more formats.

Version 1 Page 2 of 5 © Victor Cheung, 2024

https://tcl.tk/man/tcl8.6/TkCmd/ttk_button.htm

Putting Things Together
Tkinter organizes all widgets in a widget hierarchy (also called windows hierarchy), where
everything belongs to a single root at the top of the hierarchy, directly or indirectly:

root

Feet to Meters - O X
f feet
content frame
is equivalentto 0.3048 meters /////7 \\\
Calculate feat meters (resull) calculate fael’ ‘meters' 'is equivalent to'

entry lalel buttan label labeal label
Source: https://tkdocs.com/tutorial/concepts.html

This hierarchy can be arbitrarily deep, depending on how complex your Ul is and how you want
to organize the widgets. Most Ul frameworks use this concept to organize their components.

Typically, you would want to put related Ul widgets under the same container widget (e.g., a
frame). This allows you to organize your code better and even name them in a structured way,
(e.g., a frame called “user_input_frame” containing all the widgets used for user input with
“user_input” as the prefix of their names). However, this does not tell Tkinter how to place
them visually in the interface. This requires a separate step called geometry management.

Geometry Management

Tkinter provides a few geometry managers that figure out exactly where the widgets are going
to be placed and how much space each takes given the hierarchy, even when the Ul is being
resized. One commonly used manger is called pack but it is harder to use. Here we use a more
modern and often easier one called grid. To use it, you just need to specify 3 things:

e The parent-child relationship between two widgets (typically container-component).
e How child components are distributed spatially (grow/shrink) inside the parent.
e Where is the child placed inside the parent.

For example, suppose you want to create a GUI that has 3 groups of buttons at the top, 1 image
in the middle, and 1 status label at the bottom. You can first sketch out the Ul using gridlines:

Il
| _Ex

!
Sample GUI

First Group econd Group Thrid Group
[| [=]

Middle takes up all
remaining space

Eventually distributed The content area is split into a 3-by-3 grid.

Version 1 Page 3 of 5 © Victor Cheung, 2024

https://tkdocs.com/tutorial/concepts.html

With that you can figure out the widget hierarchy. By convention, we start with a content frame
that holds all the widgets in the Ul. This content frame is a widget itself and has the "root" as its
parent (this will be the first thing you create in your code, some textbooks call it "window").

#import all the necessary packages including tkinter and ttk

root = Tk()

root.rowconfigure(@, weight=1) # widget placed at row @ fills up the space
root.columnconfigure(@, weight=1) # same for widget placed at column @

create the content frame

content_frame = ttk.Frame(root, padding="5") # set its parent, add padding
content_frame.grid(row=0, column=0, sticky=N+E+S+W) # place it inside root
content_frame.columnconfigure(@, weight=1) # even distribution across columns
content_frame.columnconfigure(1l, weight=1)

content_frame.columnconfigure(2, weight=1)

content_frame.rowconfigure(l, weight=1) # widget at row 1 fills up the space

create the label frame for the first group, it's a frame with a label
first _lblFrame = ttk.LabelFrame(content frame, text="First Group")
first_lblFrame.grid(row=0, column=0, sticky=N+E+S+W)

create a button in this group

first _btn = ttk.Button(first lblFrame, text="1")

first_btn.grid(row=0, column=0) # place it at 0, ©

create the label frames for the second and third group...
write the code yourself :)

create the canvas and show an image

canvas = Canvas(content_frame, width=640, height=480, background="gray75")
canvas.grid(row=1, column=0, columnspan=3, sticky=N+E+S+W)

my_image = PhotoImage(file="image.png") # load an image file called image.png
canvas.configure(width=my_ image.width(), height=my_image.height())
canvas.create_image(@, 0, image=my_image, anchor="nw") # place image at 0, ©

create the status label together with the monitor variable
status_text = StringVar()

status_text.set("image opened")

status_1bl = ttk.Label(content frame, textvariable=status_text)
status_1bl.grid(row=2, column=0, columnspan=3, sticky=N+E+S+W)

now that we have everything, we might want to resize the window
proper_height = first_lblFrame.winfo_height() + int(canvas.cget("height"))
proper_height += status_lbl.winfo_height()
root.geometry(str(canvas.cget("width"))+"x"+str(proper_height))

need this line at the end for the interactivity
root.mainloop()

Just remember: state parent, configure spatial distribution (for container widgets), and grid.

Version 1 Page 4 of 5 © Victor Cheung, 2024

Making The Interface Interactive
With the Ul properly showing, the last part is to make it interactive. Here we only cover what
happens when the user clicks a button (i.e., handling a button-pressed event).

Event-handling Mechanism for Buttons

Tkinter’s applications are event-driven, meaning that the application responses to events by
calling corresponding functions. When a button is pressed, a button-pressed event is generated
and Tkinter looks for function(s) that are designated to handle this event. Your job is to define
such function(s) and tell Tkinter to call it when it intercepts a button-pressed event.

button-pressed event calls

(ad >
<>
O

For example, suppose you want the status label at the bottom of the sample GUI to print “Hello!”

when the button in the first group is pressed. Here is the code you need:

define a function to handle the button-pressed event from first btn
def handleBtnPressed():
status_text.set("Hello!")

rest of the GUI building code... until just before you create the button
first_btn = ttk.Button(first_lblFrame, text="1", command=handleBtnPress)

rest of the GUI building code... finish with root.mainloop()

The code above tells Tkinter to call a function when a button-pressed event is generated (user
presses the button). This function is also referred to as the “callback” of the button widget.

There are other kinds of events (e.g., when a keyboard key is pressed, when the mouse moves)
and ways to “bind” them to handling functions, which are outside the scope of this document.
For more information you can refer to https://tkdocs.com/tutorial/concepts.html#events.

Useful Bits for your GUI

There are some other useful tools offered in Tkinter. One of them is the Dialog Windows, which
can be imported like the ttk sub-package for different tasks. For example, import filedialog if
you want the user to select files or directories, and import messagebox if you want to show
simple modal alerts to notify the user about something or get their confirmation.

References:
The Tkinter tutorial this document is mostly based on: https://tkdocs.com/index.html

For more examples (and something beyond): https://realpython.com/python-gui-tkinter/

Version 1 Page 5 of 5 © Victor Cheung, 2024

https://tkdocs.com/tutorial/concepts.html#events
https://tkdocs.com/index.html
https://realpython.com/python-gui-tkinter/

