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ABSTRACT

Integrating physical learning materials with mobile device
applications may have benefits for early childhood learning.
We present three techniques for creating a hybrid tangible-
augmented reality (T-AR) enabling technology platform.
This platform enables researchers to develop applications
that use readily available physical learning materials, such
as letters, numbers, symbols or shapes. The techniques are
visual marker-based; computer-vision and machine-
learning; and capacitive touches. We describe details of
implementation and demonstrate these techniques through a
use case of a reading tablet app that uses wooden/plastic
letters for input and augmented output. Our comparative
analysis revealed that the machine-learning technique most
flexibly sensed different physical letter sets but had variable
accuracy impacted by lighting and tracking lag at this time.
Lastly, we demonstrate how this enabling technology can
be generalized to a variety of early learning apps through a
second use case with physical numbers.

Author Keyword
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interaction; tablets; education mobile apps.
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INTRODUCTION

Over the past decade, the education sector has been
incorporating mobile devices (e.g., tablets, touch laptops) as
part of its teaching tools, taking advantage of their
interactivity and portability [30]. In particular, early
education venues such as elementary classrooms are now
using tablet-based applications for basic subjects including
language learning, arithmetic, music, design, geometry and
art. A similar trend can also be observed in informal
environments including homes and museums, as evidenced
by numerous mobile apps available for purchase and
download [5, 45]. However, mobile device applications are
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largely limited to touch-based interactions with 2D digital
(screen-based) content. This misses the opportunity to use
techniques that would enable incorporation of physical
objects (e.g., peg boards, letter blocks, geometric shapes),
which are integral to many early childhood education
approaches (e.g., Frobel [9], Montessori [37]) and have
shown to benefit learning in tangible learning applications
(e.g., languages [3, 15, 19, 41], programming [20, 28, 33]).
While there is a recent development in including physical
objects in digital applications, this concept often requires
specialty hardware (e.g., tangibles), which is typically
inaccessible and unscalable due to high cost of replication
and maintenance. Moreover, such hardware is often only
useful for the specific application it was developed for; it is
not customizable for other educational and research uses.

What is needed is an enabling technology platform that
would support HCI researchers and educational developers
to easily incorporate everyday physical learning objects
(e.g., physical letters, numbers, arithmetic operators,
geometric shapes) into smart device applications. Such an
enabling system would bring together a set of capabilities
around sensing, tracking and augmenting physical shape
forms using mobile technology. Developing such a system
requires technology development research [22] exploring
different techniques that can be used to create this set of
capabilities on mobile devices. This form of research does
not have the direct goal of addressing or evaluating end-
user interaction (e.g., through a usability study). Instead the
research focuses on the development, implementation,
evaluation of proof-of-concepts, and illustration of
generalization through multiple cases. Once an enabling
technology platform is shown to work well and
generalizable to multiple cases, it can be released as open
source so others can use it. This type of validated and open
source enabling technology would make it easier, faster and
more cost effective to develop and deploy hybrid physical-
digital mobile applications for early childhood learning; and
thus benefits both researchers, looking to better understand
the benefits of hybrid systems; and developers wanting to
use physical materials alongside digital applications.

There are several commercial products for mobile devices
that combine physical objects with software applications.
These products typically include a set of physical objects
(e.g., letter tiles, shapes, toy pieces) with an app. For
example, there are products for young children aimed at



language learning, arithmetic principles and geometric
shapes (e.g., Osmo [40], Tiggly [47], Marbotic [32]).
However, our analysis of these products found that they do
not fully utilize the potential benefits of physicality. For
example, in the language learning Osmo app, the letters are
represented as 2D symbols on tiles, rather than as 3D letter
shapes, which enable tracing and can be distinguished
tactilely as well as visually. Moreover, many of these
commercial products are specialty products with single-use
input objects, thus are not practical or cost-effective for
classrooms and homes. Lastly, because they come “pre-
packaged” they do not lend themselves well to research that
evaluates their effectiveness and as a result most have not
been validated under formal research studies.

In the academic domain, there has been considerable
research evaluating the combination of physical objects and
digital content. In most studies, the systems were designed
specifically using custom hardware to explore particular
research questions and/or to support specific research
requirements (e.g., experimental control). For example, in
the area of early reading systems, Tangible PhonoBlocks
[3] used a touch tablet combined with a custom-made
electronic letter-making platform, 3D plastic physical
letters with embedded LEDs, and pogo pins. LinguaBytes
[19] and Tiblo [41] also used custom hardware modules.
These systems enabled researchers to conduct rigorous
studies. Yet, the customized hardware in these prototypes
made them difficult to scale beyond single-use research
instruments or become available for use outside specific
scenarios (e.g., labs, small field studies). Replicating such
systems is costly, hindering uses by other researchers or
widespread availability in schools and homes.

In this paper we report on our technology development
research, motivated by the potential benefits of integrating
physical objects with digital content for mobile device-
based learning, and the challenges faced by this approach in
terms of ease of development and broad deployment. We
aim to introduce a platform that includes physical objects in
mobile device-based educational applications, using
materials that are readily available in classrooms or homes
and augmented reality (AR) technology. We position this
work as a technical development research in human
computer interaction (HCI) that enables further research
[22] in early childhood educational technology. We validate
our research through four steps: (1) specifying a set of
requirements for such an enabling platform; (2) developing
three different techniques into proof-of-concept prototypes
using an illustrative case of a mobile reading app with
physical letters; (3) conducting a comparative analysis of
the benefits and limitations of the techniques; and (4)
selecting the “best” platform and showing generalizability
to another application area (physical numbers).

The results from our investigation will enable HCI
researchers and educational developers to create a variety of
hybrid physical-digital learning applications on mobile

devices, which can then be used to further explore the
benefits of both hands-on interaction with physical
materials and augmented reality (AR) in learning. We also
contribute by suggesting future directions for research and
development for this class of enabling technologies.

RELATED WORK

Early childhood education has been characterized by a long
history of using concrete representations and physical
objects in the learning process. This approach rests on the
theoretical foundation that sensory-motor activity is critical
to cognitive development [17]. That is, children develop
cognitively from physical engagement in reasoning with
materials in real world settings. Examples can be seen in
the early pedagogical “hands-on” materials and curriculums
of Dewey [12], Frobel [9], and Montessori [37]. Based on
predicted benefits of physicality and concreteness,
researchers in HCI and educational technology began to
explore if and how tangible user interfaces might provide
benefits in early childhood learning applications. For
example, in the late 1990’s, the AlgoBlocks and
Programming Bricks systems were developed to support the
physical expression of programs through the constructive
assembly of physical blocks [48].

Progression from Explorations to Application Validity
Since the early 1990’s early stage research in tangible
learning for children has moved from anecdotal reports,
proof-of-concepts, and case studies to more rigorous
empirical studies that examined both learning outcomes
(e.g., viability, effectiveness) and learning processes (e.g.,
benefits of hands-on interaction). A mixed picture has
emerged, in which some of the proposed benefits have been
supported with evidence; largely in cases where hands-on
physical manipulation was integral to learning and system
were well-designed and theoretically grounded. For
example, a tangible puzzle system that enabled hands-on
interaction with materials was shown to scaffold spatial
problem skills development through epistemic actions [2].
Results from several studies have shown that tangible
systems for learning programming improve not only
engagement and motivation but concepts related to learning
outcomes (e.g., [28, 33]). Our study of a tangible system for
early literacy acquisition showed viability and evidence that
hands-on interaction with physical letter shapes augmented
with dynamic colours led to gains in learning the alphabetic
principle, through mechanisms including shape tracing,
epistemic organization strategies, and attention to objects in
hands [15]. Yet, there have continued to be calls to action to
improve methodological rigor that links proposed benefits
to empirical evidence [4, 55]. Much remains to be explored
in hybrid physical-digital learning applications for children.
An open-source platform that enables fast, simple
prototyping with physical learning materials and digital
applications would benefit this research agenda.

Making Early Childhood Learning More Accessible
In an effort to make systems more accessible in classrooms
and homes, there has been research in tangibles that utilize



mobile devices (e.g., tablets, smart phones) rather than
desktops [30]. Some of these are research prototypes that
employ commercially available systems such as Osmo (e.g.,
[21, 31, 44]), which sells kits including letter/number tiles,
tangram pieces, and Frobel’s Sticks and Rings, along with
accompanying apps and a custom-made mirror for the tablet
to detect the objects [40]. Other systems include Tiggly [47]
and Marbotic [32] which have toys shaped as letters and
geometric shapes embedded with conductive materials,
along with accompanying apps implemented to detect the
objects and show associated digital content.

However, many of these systems use proprietary physical
objects, and few of these systems have been rigorously
deployed or evaluated in naturistic settings. What is needed
is a platform for mobile devices that researchers can use to
create prototypical learning applications and can also be
scaled for broader deployments.

Mobile AR for Learning

Augmented Reality (AR) is a technology where the display
of an otherwise real environment is augmented with virtual
objects by means of computer graphics [34]. While AR has
been an area of research interest for decades, it has only
recently reached a level of maturity to be used in mobile
devices [25]. For example, recent technological
advancements and availability of development kits (e.g.,
Vuforia [51], ARToolkit [6]) have now made mobile AR
accessible to HCI and educational technology researchers.

In preliminary studies, researchers have shown that mobile
AR increases students’ learning motivation in various
subjects and across various ages, for example, visual art in
middle school [13] and mathematics in elementary classes
[10]. Of our particular interest is using mobile AR for early
childhood learning. Recent research has demonstrated that
mobile AR helps providing contextual and location-specific
information to young learners [1] and promotes learning
both inside [7, 8, 11] and outside [29, 43] of classrooms.
More importantly, a special stream of mobile AR that
combines physical objects and digital information has been
proposed, and calls for more research in addressing its
usefulness from a psychological perspective [10]. In a
recent work by Yilmaz [54] that combined traditional toys
and AR technology, the author reported that both the
teachers and students enjoyed the combination, but also
observed a lower cognitive attainment, which was linked to
less cognitive effort exhibited by the students as they were
mostly watching the multimedia content. This suggests that
further work is needed to examine the use of physical
objects with digital content, and the balance between them.

In light of the well-documented educational benefits of
concrete representations and physical objects, and the
diversity of learning areas and benefits of mobile AR, we
are interested in the question: What techniques can we use
to create a robust, scalable hybrid tangible-AR tablet
platform that can be used to develop and deploy a wide
variety of early childhood education applications?

REQUIREMENTS

We present four requirements for a hybrid tangible-AR
enabling platform to develop early childhood learning apps
that utilize readily available physical objects. Our scope is
learning that utilizes symbols and/or shapes, which
underlies a large variety of early childhood education
application areas. To identify important aspects for this
design space, our requirements were sourced from our own
experience in tangible learning applications, prior work in
early education, and literature in tangibles and augmented
reality (e.g., [2, 10, 14, 15, 52]). Furthermore, to encompass
a wider variety of applications (thus more generalizable),
we focus on the system development rather than
application-specific content. For example, we identify
persistence in object tracking as a requirement rather than
having requirements related explicitly to learning theory.

REQ1: Readily Available Physical Objects

One of the main issues with current commercial and
research application systems for early childhood learning is
the use of specialty hardware, thus the lack of ease of
development, cost-effectiveness, scalability and broad
availability. To address this issue, we require that the
system should only consist of components that are readily
available, either purchasable or makeable with few skills.

The application should be able to run in one or both of the
most popular mobile operating systems: iOS and Android
(installed in over 99% of tablets worldwide [46]) and
should require no modification nor jailbreaking (i.e.,
unofficially escalating system privilege to use otherwise
inaccessible features) to the device. This ensures that our
enabling system will be widely accessible to researchers
and developers; and the apps created will be accessible to
teachers, parents and other caregivers to ensure accessibility
in both research and real-world settings.

In addition, to keep the components minimal, the rest of the
system should contain no more than the physical objects.
These objects should be common in homes and classrooms
and/or can be readily purchased/created by researchers,
developers or even school teachers (e.g., cut out of thick
cardboard, simple 3D printed projects).

REQ2: Hands-On Interaction with Physical Objects

To support hands-on interaction in learning [2, 4], the
system should be able to accommodate sets of physical
objects with the following properties. The physical objects
should be easy to handle by children ranging in age from 4
to 8. They should also be easy to store and move around.
For example, letters that are about 1-2.5 cm in both width
and height and 0.5-0.8 cm in thickness would be suitable.
Moreover, to facilitate tactile feedback [35] and tracing [15]
in learning, the objects should be hi-fidelity; that is, they
should be shaped in the same way as the shapes or symbols
they represent (versus, for example, generic shapes with
symbols printed on them). We envision the shape or symbol
objects with the widest applicability in learning including
common symbols like Latin lower case letters (e.g., a, b, ¢),



Arabic numbers (e.g., 0, 1, 2), basic arithmetic operators
(e.g., +, -, x), musical notes (e.g., »,b, #) and shapes
such as geometric shapes (e.g., O, A, O). More complex
ones like language specific accent marks (e.g., €, €, 8) or a
subset of Mandarin radical characters (e.g., 4, A, /K)
could also be supported. However, these more specialized
objects are outside of the scope of our current study.

We also require that the physical objects used should
withstand long-term use, be durable, and even washable
[31]. Since they will be used by young children, they should
be safe (e.g., made with materials that are certified as kids-
safe). To maximize long term use and minimize the need
for maintenance, they should also be passive objects rather
than electronically augmented objects (e.g., Bluetooth).

REQ3: Sensing and Tracking of Physical Objects

Our third requirement relates to input. To interact, a child
must be able to move the physical objects and the system
must sense and track these objects in real time. Sensing
involves accurately determining object attributes such as
individual object size, shape, identity, position, and
orientation. Some symbols have similar shapes but have
completely different meanings (e.g., letters: i/, d/p/q/b
numbers: 2/5, or music notes: half/quarter). The system
should also be able to accurately sense and distinguish these
symbols. These sensed object attributes are required so that
the learning application can provide feedback. For example,
the system can determine if the correct object was placed.
These attributes are also required so that the system can use
AR to augment physical objects with digital content (see
REQ4). For example, to augment a physical object with a
colour overlay, the system must be able to register the
digital overlay to the physical object using sensed attributes
of position, orientation, shape, size of the physical object.

Tracking involves determining relevant attributes of an
object over time (e.g., position, orientation). Moreover, the
tracking should be persistent (i.e., maintained over time) so
objects that are unchanged remain in the system, and those
that are changed (e.g., adding, removing, relocating) can be
detected without noticeable system lag. Since children often
do not have precise motor control in putting multiple
objects in a straight line, the system should be able to
account for slightly haphazard placements. For example, it
should be able to detect several letters placed in proximity
(but not perfectly aligned) and group them into a word.
Many early learning applications involve learning about
relationships between multiple symbols (e.g., spelling,
order). As such the system should be able to both sense and
track multiple objects (typically 5-10) in real time.

REQ4: Digital Augmentation of Physical Objects

The fourth requirement is a key feature of AR. Digital
content that augments a physical object must be displayed
on the tablet registered to the location of the physical
object. That is, digital overlays should be “attached” to
physical objects and move with them. In the learning
context, this requirement means that applications should be

designed to reinforce the association between the digital
and physical forms of representation. It is common in early
learning to connect abstract and concrete representations
[10]. For example, a digital overlay of the letter ‘a’ could be
directly positioned on the tablet screen over the physical
letter ‘a’ to show the association. The overlay could contain
a dynamic colour, a pattern, a word containing ‘a’, a picture
related to the letter ‘a’ or even a touch point, so that
touching the digital ‘a’ creates the ‘a’ sound. For some of
these features, it is important that the digital and the
physical object have the same size, shape, position and
orientation (i.e., are registered, as mentioned in REQ3) to
show the association of the two.

As objects are moved, the system should use the tracking
information of the objects to properly align their digital
augmented contents on the tablet display. That is, as objects
are moved, their digital representations should move with
them as a consistent overlay. Consideration must be given
to the placement of overlays with other displayed digital
content as objects and their augmented overlays relocate.

THREE HYBRID TANGIBLE-AR TECHNIQUES

In this section, we report our development and analysis of
three techniques that can be used to create systems enabling
tangible interactions with tablet-based augmented reality
(AR), specifically targeted to early education apps. We
chose these techniques because of their variety and
technical maturity, and their use of readily available
features of most tablets (camera and touchscreen) and craft
materials (wood/paper/cardboard/plastic) (REQL); their
compatibility with easily customizable objects (REQ2); and
their capability in providing AR experiences (REQ3&4). To
facilitate our discussion, we abbreviate the techniques as:
VMB (Visual Markers-based), CVML (Computer-Vision &
Machine-Learning), and CT (Capacitive Touches).

For each technique, we describe how it works, how we
implemented it, and how it operates using a simple word
spelling learning scenario as a theoretical use case scenario.

Use Case Scenario

The use case scenario is based on the PhonoBlocks system
[3], a three-year-old tangible reading system (Figure 1). We
chose it because it was one of the first tangible systems
using physical letters as part of the learning activities that
was shown to be effective, with significant learning gains in
two case studies. As such it serves as a strong exemplar of a
foundational interaction strategy for early childhood
learning applications with physical symbols or shapes.

In contrast to the original system using a tablet PC and a
platform holding 3D plastic physical letters with embedded
electronics, our envisioned tangible-AR system has only
two main components: (a) a tablet with rear-facing camera
and touchscreen running the education app; and (b) a set of
physical objects in the shape of English letters, which are
easily available in toy stores as alphabet sets, everyday
stores as fridge magnets, or just cutouts from cardboard.



Figure 1. The PhonoBlocks system on which our use case
scenario is based, where physical objects in letter shapes light
up according to English alphabetic principles, with digital
representations displayed in a close-by monitor.

The rules of the English alphabetic principles (e.g.,
blending consonant sounds, consonant-vowel-consonant
patterns) are presented in the education app as activities
such as lessons or mini-games, during which the user
arranges the physical letters as instructed. The tablet then
identifies these letters, tracks their locations, and augments
them with overlays such as colour cues, as well as
corresponding animations and sounds as rewards.

Technique 1: Visual Markers-based

The Visual Markers-based (VMB) technique is a common
approach for tracking 2D objects, on which special patterns
(markers) are placed for optical identification, often in real-
time. The markers can be simple colours [53], or more
sophisticated ones like Fiducial markers [42], allowing
tracking of orientations in addition to locations.

Implementation

To leverage the use of currently available physical letters
that learners could easily get access to, we first purchased
two sets of commonly-used physical letters (see Figure 2
left for an example) from an online store (Alibaba). We
then measured the size and shape of the letters and used
them as baselines to create the initial design of the markers.
We tested each letter one by one, and found that the
detection results were unstable, particularly in various
lighting conditions. Sometimes the system was not able to
detect similar letter shapes such as ¢ and f. We suspected
that the results were caused by (1) the drawing lines in the
markers were too thin, and (2) the letter size was too small,
and thus it was difficult for the tablet camera to detect those
lines from a distance, particularly in a dim environment.

Therefore, we decided to fabricate larger-sized (around
6.5*4.5*1cm) wooden letters ourselves using a laser cutter
and iteratively tested the patterns with them (Figure 2
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Figure 2. A set of physical letters we purchased from an online
store (Alibaba), size around 3.4*3.6%0.5 cm (Left); and a set of
physical letters we fabricated ourselves, with markers glued
onto them, size around 6.5%4.5*1cm (Right).
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Figure 3. Iterations of the marker pattern for the letter 'a'. 1)
first design, 2) thicker lines, 3) randomly distorted lines, and
4) different pattern.

Figure 4. A demo of the Visual Markers-based technique
overlaying physical letters with their digital representations.

right). For each iteration of the patterns, we glued them
onto the letters and tested their reliability using the Vuforia
plugin for Unity [51] (an AR software development kit for
mobile devices, for its popularity and compatibility with
Unity) and the education app running on a tablet.

We also revised our marker design by increasing the stroke
thickness of our drawing lines and printed out larger sized
physical letters ourselves (Figure 3-2), yet the testing
results with similar letters were still not very accurate. We
then maximized the differences between each letter by
adding more randomly distorted patterns (Figure 3-3) and
used various patterns for each letter (Figure 3-4). This led
the detection of the patterns to an acceptable level.

Using It for Word Spelling Learning

To use the education app implemented with VMB, the adult
user, such as teacher or parent, has to acquire a set of
English alphabet physical letters and a corresponding set of
pre-defined patterns (shaped like the letters). The patterns
are then attached to the letters to be recognized by the app.

During a learning activity, the child user points the tablet’s
camera to a surface on which they arrange the letters as
instructed (Figure 4). The tablet then identifies these letters,
track their locations, and augment them with digital content
as an overlay in the live video feed captured by the camera.

Technique 2: Computer-Vision & Machine-Learning

The Computer-Vision & Machine-Learning (CVML)
technique is based on the widely-used Optical Character
Recognition (OCR) technique, where images of text are
scanned and converted into machine-encoded text. This is
mainly achieved by extracting features of the scanned
images and comparing to a pre-existing feature model for
the closest match. Some examples include Microsoft Lens
and Adobe Scan, which are mobile apps converting pictures
of documents into text files for reading and editing.



Implementation

We explored this technique by first using a few existing
OCR tools, including open source OCR models and
commercialized OCR tools, such as tesseract [56] and
ABBYY OCR SDK [36], on the physical letter set we
purchased (Figure 2-1). We took pictures of the letters and
passed the images to the OCR tools for testing. However,
performances were not satisfactory. We believed there were
two main reasons. First, instead of 2D letters used in the
traditional OCR tasks, our letters were 3D. Therefore, if the
light is strong or the light condition changes, the resulting
shadows will interfere with the detection of the letters. In
most cases, training sets of previous OCR tools do not
include letters with shadows. Second, the fonts of the 3D
letter set we used were different from the standard fonts in
newspapers and books. Therefore, it was difficult for
previous models to perform satisfactorily.

Thus, we decided to curate a training set based on our
purchased letter set and built a machine-learning model
from scratch. We curated the training set by processing all
the pictures we took for the 26 characters, each 25 times
under different lighting conditions. On each image, we
performed image binarization by setting up a threshold of
gray level to convert a color image into a black and white
image. Next, we segmented the image based on connected
component analysis to detect the boundary of each letter.
Then, we rescaled each sub-image to the size of 50 x 50
(width x height) for passing it to the Convolutional Neural
Network (CNN) [27]. To avoid overfitting and improve the
generalization of the deep learning model, we augmented
the dataset by adding distortions and rotations to each
image. This resulted in 280 variations per picture, that is
7000 images per letter. We ended up having 182000 images
in total in our training set, and 6325 images in our testing
set. The procedure is described in Figure 5.

To build the CNN model, we applied grid search to find the
best hyperparameters including the number of kernels in
each layer, kernel size, learning rate, and decay. Our CNN
is composed of two convolutional layers and one fully
connected layer (refer to ANNEX for details of the layers).
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Figure 5. Procedure of binarization, segmentation, and
augmentation of the letter pictures for training the
Convolutional Neural Network (CNN).
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Figure 6. A demo of the CVML technique overlaying physical
letters with their digital representations.

We trained 50 epochs before testing the model and built
five models based on the previous approach. The average
accuracy of the model is 98.73%. When using all the five
models together by averaging the results, the system could
achieve 99.11% accuracy. Once the models were built, we
transferred them to the Unity-based app to recognize the
letters via the TensorFlowSharp wrapper API [23].

Considering computational resources, we down-sampled
the video captured by a tablet (Samsung Galaxy Tab S4) to
3 frames per second and input them to the trained CNN
model after extracting and preprocessing the letters into
segments. Each letter was recognized in approximately 0.02
second, with the overlay generated in a similar time.

Using It for Word Spelling Learning

To use the education app implemented with CVML, the
adult user, such as teacher or parent, only has to acquire a
set of English alphabet physical letters. However, this set
needs to be from the same font family used to curate the
machine learning model. This issue can however be
mitigated by curating the model with more typefaces that
are commonly used or including a “training mode” in the
app for the model to learn on-site.

A learning activity with this technique is the same as that of
VMB: the child user points the tablet’s camera to a surface
on which they arrange the letters as instructed (Figure 6).
The tablet then identifies these letters, tracks their physical
locations, and augments them with digital content as an
overlay in the live video feed captured by the camera.

Technique 3: Capacitive Touches

The Capacitive Touches (CT) technique builds on the fact
that most tablets detect capacitive touches directly on the
display. By arranging multiple conductive nibs (commonly
used as the tip of a capacitive stylus), or more recently 3D
printed conductive materials (e.g., [18, 24]) in a pre-defined
configuration, it is possible for the tablet to recognize the
arrangement and thus the object to which it is associated.
Tiggly [47] and Marbotic [32] are two commercially
available products using this approach associating different
arrangements to objects that are shaped like Iletters.
However, in their product description both products are
designed to accept one letter at a time that acts like a stamp
(this action also results in the person touching the letter to



provide the necessary electrical ground for the touches to be
detected). We are instead interested in a system which
simultaneously recognizes multiple letters (e.g., up to five)
to support spelling of words, resulting in some letters not
being touched and yet still be recognized and tracked.

Implementation

We based our own implementation of the CT approach on
the Passive Untouched Capacitive Widgets (PUCs)
developed by Voelker et al. [50]. In PUCs, two or more
conductive round pads are connected using a conductive
bridge, which allowed capacitive coupling to occur and
form an electrical ground within the pads. This approach
allows the object to be detected even when no one is
touching it, and thus frees the person’s hands to handle
other objects (letters). The authors further investigated the
sizes of and the distances between the conductive pads on
various devices and concluded that a diameter of 7mm (of
each pad) and a distance of 20mm (between pads) to be the
minimal for a 90-100% detection rate. These parameters
formed the basis of our implementation.

To comply with REQ1&2 of being accessible, we decided
to fabricate the letters in-house using readily available
equipment in the maker community, including 3D printers
and laser cutters, so others can replicate our implementation
relatively easily. After several design iterations from
printing both the letter and conductive pads with a 3D
printer (Figure 7 left) to offloading the letter fabrication to
laser cutting/engraving (Figure 7 right), we developed a
process of 3D printing the connected conductive pads,
converting a font family into a template for laser cutting,
and carving out the cavity to embed the conductive pads
into the letters. In addition, we used transparent acrylic
plastics for the letters to allow the tablet display to augment
them from underneath. We also developed an application
that recognized the letters based on the distance between
the conductive pads (Figure 8).

Figure 7. Iterations of capacitive letters (back side of 'a' and
'b"). 3D printed letters and pads (Left), laser-cut & engraved
letters and 3D printed pads (Right).

Figure 8. An app recognizing the letters when put on the
displayed slots. 3D printed letters & pads (Left), laser-cut
letters & 3D printed pads connected by copper tapes (Right).

However, we soon realized that the recognition relies
heavily on the hardware and filtering thresholds being used
in the tablets to detect touches. When testing this technique
on a Samsung Galaxy Tab A SM-T580, the conductive pads
were detected as touches and the associated letters were
recognized (Figure 8 left & right); but not on an Apple iPad
Mini 2. The authors of the PUCs paper [50] also reported
various detection behaviours and durations in their tested
devices. We have yet to find a way for the letters to be
consistently recognized across tablets without significant
modifications to the letters (e.g., embedding electronics
[49]) or the tablets (e.g., editing the filtering thresholds).

Moreover, we faced two main challenges when adopting
PUCs’ technique. First, as PUCs were only presented as
widgets of generic shapes (bridge and ring), we had to
design 26 different configurations to represent the 26 letters
in the English alphabet. Second, a typical tablet can detect
up to 10 touches simultaneously, meaning that if we want to
have up to five letters detected, each letter can only contain
two conductive pads, which happens to be the minimal
number for the app to use distance as an identifying feature
(and still without the orientation information). We also had
to limit where each letter could be (shown as white
bounding boxes in Figure 8) so touches from different
letters would not interfere with each other.

Using It for English Spelling Learning

To use the education app implemented with CT, the adult
user, such as teacher or parent, needs to acquire a set of
transparent English alphabet physical letters, conductive
pads, and materials connecting the pads (we used copper
tapes found in hardware stores). The conductive pads are
then attached to the letters and connected by the copper tape
according to a pre-defined set of configurations (distances).

During a learning activity, the child user puts the letters on
the surface of the tablet on which they arrange the letters as
instructed. The tablet then identifies these letters, tracks
their physical locations, and augments them with digital
content. But instead of as an overlay, the digital content will
be displayed underneath the letters. This is the reason why
the letters should be transparent so content can be seen.

COMPARATIVE ANALYSIS: BENEFITS & LIMITATIONS

We present our comparative analysis of the benefits and
limitations of each technique relative to our requirements
for a valid system. For each requirement, two experts in
tangibles and mobile development rated each technique
using a three-level scale (H=high compliance to
requirements, M=medium, L=low). Through discussion the
raters reached agreement on all items. We also provide
details on how well each technique fulfills the requirements
based on what we learned from our implementations. Our
accuracy and lag testing of each proof-of-concept system
was done using a “perceivable latency” criterion (e.g., [26])
and we acknowledge that it may be tablet-specific, in
particular for lag (the time between moving a letter and
perceiving its digital representation move on the display).



REQ1: Readily Available Physical Objects

All techniques required no more than the tablet and the
letter set to function, as compared to commercial products
such as Osmo [40], where a mirror is needed for the front-
facing camera to see the physical objects; and to research
prototypes such as Phonoblocks [3], where a platform with
pogo pins is needed to detect the physical letters.

Both VMB and CVML used computational algorithms that
were hardware independent to recognize the physical
objects, and thus available for both iOS and Android. On
the other hand, CT relied on the capacitive sensing
hardware and the way the operating system registers
touches, which from our testing was not viable in all tablets.

CVML used physical objects as they were, whereas both
VMB and CT required modifications for recognition. VMB
required a specific set of patterns attached to the objects,
but was easier than attaching and connecting conductive
pads to the objects at specific distances in CT.

To sum up, CVML fulfilled REQ1 the best because of its
ease of acquisition of all the components, followed by
VMB. CT falls short here as it was not viable in all tablets.

REQ2: Hands-On Interaction with Physical Objects

We managed to purchase/fabricate all the physical objects
in our implementations, thus were able to control their
shapes for matching representation, as well as their sizes for
easy handling. CVML recognized physical objects as they
were, hence posed no size constraints as long as they were
visibly distinguishable, and thus made them easy to handle.
On the other hand, from our testing, there was a minimum
size limit on the patterns in VMB and the distances between
connected capacitive pads in CT, which was about 2 times
larger than the expected 1-2.5 cm height and width.

As CVML utilizes physical objects without modification,
the objects are thus as durable as their composite material.
The modifications required for both VMB and CT might
wear over time. However, VMB used stick-on markers that
could easily be replaced. In contrast, CT required
reapplying and reconnecting capacitive pads, making it the
least durable and hardest for maintenance.

To sum up, similar to REQ1, CVML fulfilled REQ2 the
best because of its use of non-modified physical objects,
followed by VMB. CT fell short due to the extra procedures
in making the objects conductive.

REQ3: Sensing and Tracking of Physical Objects

Both VMB and CVML could identify multiple objects (5-
10, as patterns in VMB and as islands in CVML) in real-
time. In contrast, due to the limit of 10 capacitive touch
points detection in most tablets, CT was not able to identify
more than 3 objects in arbitrary orientations.

Nevertheless, CT used a simple mapping between touch
configurations and objects, so the recognition had no
perceivable lag. As each object in VMB was recognized via
its pattern with multiple features, its presence and position

were tracked with a slight lag (within seconds). CVML
required a separate step to determine the location of
individual objects after recognition, thus resulted in an
observable lag in our testing (approximately 1-2 seconds).
Its tracking was also affected by occlusion. While we
acknowledge the lags are tablet-specific, and will likely be
improved with technologies, the relative time difference in
recognition and tracking will remain similar.

Both VMB and CVML used images taken by the built-in
camera as input for object recognition and were sensitive to
poor lighting conditions (sensing and tracking accuracy
decreases). VMB performed slightly better due to the use of
multiple features being printed in a discernable manner,
while CVML suffered from arbitrary shadows due to light
source variations and occlusions. CT was unaffected by any
lighting condition as it used touch points as input.

Both VMB and CVML recognized objects individually
along with their physical location relative to each other,
hence the order of the objects could be deduced. However,
as there was no distinction between touch points; objects in
CT had to be placed in sufficient separation for the software
to correctly isolate them. In comparison, many tangible
learning systems utilize physical constraints to limit how
objects are placed (e.g., sides must match in Tiblo [41],
letters must fit in a platform in PhonoBlocks [3]).

As an additional observation, all techniques recognized
objects without continuous touch from a hand. However, in
CT the touch points eventually disappeared, as explained as
adaption of the capacitive touch filtering algorithms in [50],
and required a touch to reappear.

To sum up, VMB and CVML had similar strengths in
multi-object sensing and tracking but were not as
responsive and as resilient against poor light conditions and
occlusions as compared to CT, resulting in varying degrees
of fulfillment of REQ3.

REQ4: Digital Augmentation of Physical Objects

All techniques were capable of recognizing objects
individually and in real time, displaying their digital
representations (e.g., images with same outlook, associate
sounds) within the app; and in case of representations
visually over (in VMB/CVML) or under (in CT) them with
proper alignments.

To sum up, as the digital representations were controlled by
the system, all techniques provided support for effective
learning through AR, hence all fulfilled REQ4 equally well.

DISCUSSION

Table 1 summarizes the comparison of the three techniques
we implemented, with detailed breakdowns under each
requirement. The breakdowns were created by an expert in
tangibles and mobile development using a High-Medium-
Low scale and were verified by a second expert not
involved in building the prototypes. Overall, we found that
they all fulfilled the requirements to varying degrees,



resulting in trade-offs that must be considered when
developers choose one technique over the other. There is no
one best solution at this moment in time, but we believe a
CVML-based implementation is the most promising one.

Trade-offs

In terms of recognizing symbols, CT was the simplest to
implement as it was a direct conversion from touch
configurations (distances) to symbols, whereas VMB
required a dataset of patterns and CVML required a
learning model. However, CT required the most effort to
fabricate the physical objects (attaching conductive pads to
laser-cut/3D-printed objects), followed by VMB which
required printing out pre-made patterns. CVML was the
easiest as it required no fabrication, since the objects could
be purchased and used without any modification.

In terms of multiple sensing — that is, the maximum number
of objects detected and tracked simultaneously — CVML
could, in theory, sense any number as long as the objects
were visually separated from each other. Currently, the
Vuforia SDK that we used for VMB had a limit of five
simultaneous active targets. While we expect the limit will
increase as the SDK improves, we do not anticipate it to be
more than that of CVML, due to the need of multiple
feature points for each pattern to be processed. As CT relied
on the number of maximum touches detected by the tablet,
we believe it will remain sensing the lowest number of
objects amongst all three techniques. However, CT required
the least amount of sensing time, and was impervious to
varying or poor lighting conditions. In contrast, both VMB
and CVML’s accuracy degraded when the patterns were not
clear, or the shadows were too prominent.

Requirements VMB ‘ CVML ‘ CT
REQI: Readily Available

Composing components High High High
Hardware independence High High

Easy of object acquisition Medium High

REQ2: Repeated Hands-On Use

Sizing freedom Medium High

Ease of object maintenance | Medium High

REQ3: Persistent Multi-Object Sensing & Tracking

Multiple sensing High High

Recognition simplicity Medium

Environmental resilience Medium

Object placement resilience | High High Medium
Sensing persistence High High Medium
REQA4: Associated Augmentation

Matching outlook High High High
Support of alignment High High High

Table 1. Tabular comparison of the techniques in terms of the
requirements, shaded for ease of reference.

In terms of augmenting the physical objects, both VMB and
CVML functioned very similarly: objects were placed on a
surface with the tablet held above (or leveled if the objects
are magnetically attached to a vertical surface), digital
content was shown on the tablet superimposing the live
video feed from the built-in camera. For the camera to
capture all the objects, the tablet had to be held steadily at
an adequate distance from the surface, which might cause
fatigue and might not be easy for young children when their
motor skills are developing. To address this issue, we have
explored using a tablet stand for stability and/or had one
person holding the tablet, while another worked with the
letters [16]. In contrast, with CT, objects were placed on the
tablet, with digital content shown under/around them, thus
posing little space constraint. The tablet could also be
placed on a surface to reduce fatigue.

Recommended Implementation

Based on the results of our comparative analysis, we
recommend that at this time the best technique for HCI
researchers and educational developers to use is CVML. In
this case, once deployed, an adult user would purchase a
letter set, regardless of what font it is in, and run the app in
a “training mode” which guides them through the building
process of the learning model by capturing multiple images
of the letters (as simple as taking multiple photos), or
download a pre-trained model that recognizes the font. The
education app can then be passed to the child user to be
used as designed without any further setting up.

As mentioned, we used the English language learning
scenario as a foundational interaction strategy. However,
our requirements and the techniques we explored are
general enough to accommodate many other symbols. By
expanding the physical objects set to include symbols from
other areas such as arithmetic, music, and geometry,
children would be able to enjoy a wide range of hands-on
learning experience in topics and interactivity.

Limitations & Future Work

During our development and analysis of the three tangible-
AR techniques we identified benefits and limitations, as
well as trade-offs. Some of these findings arose from
current technological constraints, such as sophistication of
learning models (and quantity of available data to train
one), touch point detection; or our own knowledge deficits
in fabrication and programming, such as working with
conductive materials and implementing more efficient
sensing and tracking algorithms.

As knowledge and technologies advance, researchers can
take advantage of improvements and create systems that
can better meet the requirements listed above. One
promising direction is the CVML technique, which can
recognize unmodified physical objects. The biggest
challenge, however, is to make CVML less prone to poor
light conditions (e.g., varying light sources) and faster in
tracking objects. These challenges could be addressed by
improvements in camera sensors and algorithm efficiency.



Moreover, over time there might be new techniques to
sense and track physical objects. However, it is likely that
they will be variations of those we have listed. Our goal
was to introduce these techniques and show their feasibility
to educational developers and HCI researchers, so that they
can then implement and conduct further research in the area
of early childhood learning; using our requirements to
evaluate new techniques and select the best for the job.
With this platform they will have access to the core
functionality required to create diverse hybrid tangible-AR
systems, and be able to conduct more rigorous studies on
the effectiveness of such systems with child learners.

GENERALIZATION: NUMBER USE CASE

We used language learning and a lower-case Latin letter set
to illustrate how our technology platform can be
implemented through three selected hybrid tangible-AR
techniques. To demonstrate its generalizability, we provide
a second use case using Arabic numbers (i.e., 0-9), which
can be accommodated by all of the three techniques
(REQ1&2). This is because the core strategy of VMB and
CVML was to recognize visual patterns and CT to
recognize  configurations of conductive materials.
Specifically, we demonstrate generalizability through
sensing, tracking, and augmenting number objects using the
CVML technique. In Figure 9 we show the most demanding
test case in which multiple physical numbers were
duplicated exactly in their position, orientation, and size;
and augmented with a precisely registered colour overlay.

Figure 9. A demo of the CVML technique digitally
augmenting the numbers exactly to their shapes.

In order to sense and track numbers we adapted the CVML
technique using transfer learning to train the CNN model to
recognize the new number objects [39]. Transfer learning is
a machine learning technique in which information from
previously learned tasks is transferred to the task of
learning a new, similar task. By using existing information
from a previous task, the efficiency of learning a new
symbol set is significantly improved compared to the initial
work to train the system. To train our CVML program to
sense and track number objects, we added pictures of the
number set to the existing model as a new task (refer to
ANNEX for details). To use our platform to augment
numbers, we simply used our existing code without
modification, noting that developers can adapt the platform
to use other forms of overlays besides number colour. In
summary, we demonstrate the ease of generalizability of the
CVML technique to sense, track and augment numbers,
another reason we recommend this approach.

CONCLUSION

In this paper, we demonstrated and analyzed three
techniques that enable physical learning materials to be
integrated with tablet-based applications for early childhood
education using augmented reality. To inform our
implementations, we established four requirements from
analyses of existing systems and our own previous work in
the field of tangible computing for early childhood
education. Our analysis focused on comparing how each
approach met these requirements, explored through a use
case derived from a previously validated tangible reading
system. Results from this analysis revealed current
limitations, trade-offs, as well as opportunities for further
development and deployment. Lastly, we demonstrated
generalizability of our recommended CVML technique
through a second use case involving 3D numbers, which
could be used to create arithmetic learning applications.

This work moves us one step closer to a development
platform that enables educational developers, and HCI and
learning sciences researchers to create scalable hybrid
tangible-AR applications for early childhood education,
with more complex, creative scenarios and use cases, as
well as real world testing in effectiveness and robustness.

ANNEX

We include details of our CNN model in the CVML
technique for replicability. The CNN model is composed of
two convolutional layers and one fully connected layer. The
first convolutional layer filters the 50 x 50 x 1 input
features with 64 kernels of size 3 x 3 x 1 and a stride of 1.
The second convolutional layer uses 128 kernels of size 3 x
3 x 64. The third convolutional layer uses 256 kernels of
size 3 x 3 x 128. We used max pooling (2 x 2) with a stride
of 2 for the outputs of convolutional layers, and added one
dropout layer after each convolutional layer, with a dropout
rate of 0.4. The fully connected layer, connected to the third
convolutional layer, is composed of 1024 neurons. The
output layer is composed of 26 neurons (one per letter). We
used the ReLU non-linearity activation function [39] for all
convolutional layers and the fully connected layer. For the
output layer, we used softmax activation to predict the
category. All the weights were initialized based on a Xavier
uniform. The CNN was trained using the Adam optimizer
with a batch size of 64 examples, learning rate of 1x10™,

To train the existing CNN model to recognize numbers (our
second use case) using transfer learning, we created a
training set for detecting number by making a small video
(approx. 15s) for each of the numbers (0-9) and extracting
images from it (or taking snapshots). We then froze the last
layer of the existing model (which classifies the images into
26 letters, i.e., 26 output neuron) and replaced it with the 10
output neuron. This process is true for any kind of shapes
(e.g., other letters, arithmetic symbols, music notes).
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