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ABSTRACT 
Integrating physical learning materials with mobile device 
applications may have benefits for early childhood learning. 
We present three techniques for creating a hybrid tangible-
augmented reality (T-AR) enabling technology platform. 
This platform enables researchers to develop applications 
that use readily available physical learning materials, such 
as letters, numbers, symbols or shapes. The techniques are 
visual marker-based; computer-vision and machine-
learning; and capacitive touches. We describe details of 
implementation and demonstrate these techniques through a 
use case of a reading tablet app that uses wooden/plastic 
letters for input and augmented output. Our comparative 
analysis revealed that the machine-learning technique most 
flexibly sensed different physical letter sets but had variable 
accuracy impacted by lighting and tracking lag at this time. 
Lastly, we demonstrate how this enabling technology can 
be generalized to a variety of early learning apps through a 
second use case with physical numbers. 

Author Keyword 
Early childhood learning; augmented reality; tangible 
interaction; tablets; education mobile apps.  
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INTRODUCTION 
Over the past decade, the education sector has been 
incorporating mobile devices (e.g., tablets, touch laptops) as 
part of its teaching tools, taking advantage of their 
interactivity and portability [30]. In particular, early 
education venues such as elementary classrooms are now 
using tablet-based applications for basic subjects including 
language learning, arithmetic, music, design, geometry and 
art. A similar trend can also be observed in informal 
environments including homes and museums, as evidenced 
by numerous mobile apps available for purchase and 
download [5, 45]. However, mobile device applications are 

largely limited to touch-based interactions with 2D digital 
(screen-based) content. This misses the opportunity to use 
techniques that would enable incorporation of physical 
objects (e.g., peg boards, letter blocks, geometric shapes), 
which are integral to many early childhood education 
approaches (e.g., Fröbel [9], Montessori [37]) and have 
shown to benefit learning in tangible learning applications 
(e.g., languages [3, 15, 19, 41], programming [20, 28, 33]). 
While there is a recent development in including physical 
objects in digital applications, this concept often requires 
specialty hardware (e.g., tangibles), which is typically 
inaccessible and unscalable due to high cost of replication 
and maintenance. Moreover, such hardware is often only 
useful for the specific application it was developed for; it is 
not customizable for other educational and research uses.  

What is needed is an enabling technology platform that 
would support HCI researchers and educational developers 
to easily incorporate everyday physical learning objects 
(e.g., physical letters, numbers, arithmetic operators, 
geometric shapes) into smart device applications. Such an 
enabling system would bring together a set of capabilities 
around sensing, tracking and augmenting physical shape 
forms using mobile technology. Developing such a system 
requires technology development research [22] exploring 
different techniques that can be used to create this set of 
capabilities on mobile devices. This form of research does 
not have the direct goal of addressing or evaluating end-
user interaction (e.g., through a usability study). Instead the 
research focuses on the development, implementation, 
evaluation of proof-of-concepts, and illustration of 
generalization through multiple cases. Once an enabling 
technology platform is shown to work well and 
generalizable to multiple cases, it can be released as open 
source so others can use it. This type of validated and open 
source enabling technology would make it easier, faster and 
more cost effective to develop and deploy hybrid physical-
digital mobile applications for early childhood learning; and 
thus benefits both researchers, looking to better understand 
the benefits of hybrid systems; and developers wanting to 
use physical materials alongside digital applications.  

There are several commercial products for mobile devices 
that combine physical objects with software applications. 
These products typically include a set of physical objects 
(e.g., letter tiles, shapes, toy pieces) with an app. For 
example, there are products for young children aimed at 
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language learning, arithmetic principles and geometric 
shapes (e.g., Osmo [40], Tiggly [47], Marbotic [32]). 
However, our analysis of these products found that they do 
not fully utilize the potential benefits of physicality. For 
example, in the language learning Osmo app, the letters are 
represented as 2D symbols on tiles, rather than as 3D letter 
shapes, which enable tracing and can be distinguished 
tactilely as well as visually. Moreover, many of these 
commercial products are specialty products with single-use 
input objects, thus are not practical or cost-effective for 
classrooms and homes. Lastly, because they come “pre-
packaged” they do not lend themselves well to research that 
evaluates their effectiveness and as a result most have not 
been validated under formal research studies. 

In the academic domain, there has been considerable 
research evaluating the combination of physical objects and 
digital content. In most studies, the systems were designed 
specifically using custom hardware to explore particular 
research questions and/or to support specific research 
requirements (e.g., experimental control). For example, in 
the area of early reading systems, Tangible PhonoBlocks 
[3] used a touch tablet combined with a custom-made 
electronic letter-making platform, 3D plastic physical 
letters with embedded LEDs, and pogo pins. LinguaBytes 
[19] and Tiblo [41] also used custom hardware modules. 
These systems enabled researchers to conduct rigorous 
studies. Yet, the customized hardware in these prototypes 
made them difficult to scale beyond single-use research 
instruments or become available for use outside specific 
scenarios (e.g., labs, small field studies). Replicating such 
systems is costly, hindering uses by other researchers or 
widespread availability in schools and homes. 

In this paper we report on our technology development 
research, motivated by the potential benefits of integrating 
physical objects with digital content for mobile device-
based learning, and the challenges faced by this approach in 
terms of ease of development and broad deployment. We 
aim to introduce a platform that includes physical objects in 
mobile device-based educational applications, using 
materials that are readily available in classrooms or homes 
and augmented reality (AR) technology. We position this 
work as a technical development research in human 
computer interaction (HCI) that enables further research 
[22] in early childhood educational technology. We validate 
our research through four steps: (1) specifying a set of 
requirements for such an enabling platform; (2) developing 
three different techniques into proof-of-concept prototypes 
using an illustrative case of a mobile reading app with 
physical letters; (3) conducting a comparative analysis of 
the benefits and limitations of the techniques; and (4) 
selecting the “best” platform and showing generalizability 
to another application area (physical numbers).  

The results from our investigation will enable HCI 
researchers and educational developers to create a variety of 
hybrid physical-digital learning applications on mobile 

devices, which can then be used to further explore the 
benefits of both hands-on interaction with physical 
materials and augmented reality (AR) in learning. We also 
contribute by suggesting future directions for research and 
development for this class of enabling technologies.  

RELATED WORK 
Early childhood education has been characterized by a long 
history of using concrete representations and physical 
objects in the learning process. This approach rests on the 
theoretical foundation that sensory-motor activity is critical 
to cognitive development [17]. That is, children develop 
cognitively from physical engagement in reasoning with 
materials in real world settings. Examples can be seen in 
the early pedagogical “hands-on” materials and curriculums 
of Dewey [12], Fröbel [9], and Montessori [37]. Based on 
predicted benefits of physicality and concreteness, 
researchers in HCI and educational technology began to 
explore if and how tangible user interfaces might provide 
benefits in early childhood learning applications. For 
example, in the late 1990’s, the AlgoBlocks and 
Programming Bricks systems were developed to support the 
physical expression of programs through the constructive 
assembly of physical blocks [48]. 

Progression from Explorations to Application Validity 
Since the early 1990’s early stage research in tangible 
learning for children has moved from anecdotal reports, 
proof-of-concepts, and case studies to more rigorous 
empirical studies that examined both learning outcomes 
(e.g., viability, effectiveness) and learning processes (e.g., 
benefits of hands-on interaction). A mixed picture has 
emerged, in which some of the proposed benefits have been 
supported with evidence; largely in cases where hands-on 
physical manipulation was integral to learning and system 
were well-designed and theoretically grounded. For 
example, a tangible puzzle system that enabled hands-on 
interaction with materials was shown to scaffold spatial 
problem skills development through epistemic actions [2]. 
Results from several studies have shown that tangible 
systems for learning programming improve not only 
engagement and motivation but concepts related to learning 
outcomes (e.g., [28, 33]). Our study of a tangible system for 
early literacy acquisition showed viability and evidence that 
hands-on interaction with physical letter shapes augmented 
with dynamic colours led to gains in learning the alphabetic 
principle, through mechanisms including shape tracing, 
epistemic organization strategies, and attention to objects in 
hands [15]. Yet, there have continued to be calls to action to 
improve methodological rigor that links proposed benefits 
to empirical evidence [4, 55]. Much remains to be explored 
in hybrid physical-digital learning applications for children. 
An open-source platform that enables fast, simple 
prototyping with physical learning materials and digital 
applications would benefit this research agenda.  

Making Early Childhood Learning More Accessible 
In an effort to make systems more accessible in classrooms 
and homes, there has been research in tangibles that utilize 



mobile devices (e.g., tablets, smart phones) rather than 
desktops [30]. Some of these are research prototypes that 
employ commercially available systems such as Osmo (e.g., 
[21, 31, 44]), which sells kits including letter/number tiles, 
tangram pieces, and Fröbel’s Sticks and Rings, along with 
accompanying apps and a custom-made mirror for the tablet 
to detect the objects [40]. Other systems include Tiggly [47] 
and Marbotic [32] which have toys shaped as letters and 
geometric shapes embedded with conductive materials, 
along with accompanying apps implemented to detect the 
objects and show associated digital content.  

However, many of these systems use proprietary physical 
objects, and few of these systems have been rigorously 
deployed or evaluated in naturistic settings. What is needed 
is a platform for mobile devices that researchers can use to 
create prototypical learning applications and can also be 
scaled for broader deployments.  

Mobile AR for Learning  
Augmented Reality (AR) is a technology where the display 
of an otherwise real environment is augmented with virtual 
objects by means of computer graphics [34]. While AR has 
been an area of research interest for decades, it has only 
recently reached a level of maturity to be used in mobile 
devices [25]. For example, recent technological 
advancements and availability of development kits (e.g., 
Vuforia [51], ARToolkit [6]) have now made mobile AR 
accessible to HCI and educational technology researchers. 

In preliminary studies, researchers have shown that mobile 
AR increases students’ learning motivation in various 
subjects and across various ages, for example, visual art in 
middle school [13] and mathematics in elementary classes 
[10]. Of our particular interest is using mobile AR for early 
childhood learning. Recent research has demonstrated that 
mobile AR helps providing contextual and location-specific 
information to young learners [1] and promotes learning 
both inside [7, 8, 11] and outside [29, 43] of classrooms. 
More importantly, a special stream of mobile AR that 
combines physical objects and digital information has been 
proposed, and calls for more research in addressing its 
usefulness from a psychological perspective [10]. In a 
recent work by Yilmaz [54] that combined traditional toys 
and AR technology, the author reported that both the 
teachers and students enjoyed the combination, but also 
observed a lower cognitive attainment, which was linked to 
less cognitive effort exhibited by the students as they were 
mostly watching the multimedia content. This suggests that 
further work is needed to examine the use of physical 
objects with digital content, and the balance between them.  

In light of the well-documented educational benefits of 
concrete representations and physical objects, and the 
diversity of learning areas and benefits of mobile AR, we 
are interested in the question: What techniques can we use 
to create a robust, scalable hybrid tangible-AR tablet 
platform that can be used to develop and deploy a wide 
variety of early childhood education applications?  

REQUIREMENTS 
We present four requirements for a hybrid tangible-AR 
enabling platform to develop early childhood learning apps 
that utilize readily available physical objects. Our scope is 
learning that utilizes symbols and/or shapes, which 
underlies a large variety of early childhood education 
application areas. To identify important aspects for this 
design space, our requirements were sourced from our own 
experience in tangible learning applications, prior work in 
early education, and literature in tangibles and augmented 
reality (e.g., [2, 10, 14, 15, 52]). Furthermore, to encompass 
a wider variety of applications (thus more generalizable), 
we focus on the system development rather than 
application-specific content. For example, we identify 
persistence in object tracking as a requirement rather than 
having requirements related explicitly to learning theory. 

REQ1: Readily Available Physical Objects 
One of the main issues with current commercial and 
research application systems for early childhood learning is 
the use of specialty hardware, thus the lack of ease of 
development, cost-effectiveness, scalability and broad 
availability. To address this issue, we require that the 
system should only consist of components that are readily 
available, either purchasable or makeable with few skills.  

The application should be able to run in one or both of the 
most popular mobile operating systems: iOS and Android 
(installed in over 99% of tablets worldwide [46]) and 
should require no modification nor jailbreaking (i.e., 
unofficially escalating system privilege to use otherwise 
inaccessible features) to the device. This ensures that our 
enabling system will be widely accessible to researchers 
and developers; and the apps created will be accessible to 
teachers, parents and other caregivers to ensure accessibility 
in both research and real-world settings. 

In addition, to keep the components minimal, the rest of the 
system should contain no more than the physical objects. 
These objects should be common in homes and classrooms 
and/or can be readily purchased/created by researchers, 
developers or even school teachers (e.g., cut out of thick 
cardboard, simple 3D printed projects). 

REQ2: Hands-On Interaction with Physical Objects 
To support hands-on interaction in learning [2, 4], the 
system should be able to accommodate sets of physical 
objects with the following properties. The physical objects 
should be easy to handle by children ranging in age from 4 
to 8. They should also be easy to store and move around. 
For example, letters that are about 1-2.5 cm in both width 
and height and 0.5-0.8 cm in thickness would be suitable. 
Moreover, to facilitate tactile feedback [35] and tracing [15] 
in learning, the objects should be hi-fidelity; that is, they 
should be shaped in the same way as the shapes or symbols 
they represent (versus, for example, generic shapes with 
symbols printed on them). We envision the shape or symbol 
objects with the widest applicability in learning including 
common symbols like Latin lower case letters (e.g., a, b, c), 



Arabic numbers (e.g., 0, 1, 2), basic arithmetic operators 
(e.g., +, -, ×), musical notes (e.g., ♪,♭,♯) and shapes 
such as geometric shapes (e.g., □, △, ○). More complex 
ones like language specific accent marks (e.g., é, è, â) or a 
subset of Mandarin radical characters (e.g., 金,木,水 ) 
could also be supported. However, these more specialized 
objects are outside of the scope of our current study.  

We also require that the physical objects used should 
withstand long-term use, be durable, and even washable 
[31]. Since they will be used by young children, they should 
be safe (e.g., made with materials that are certified as kids-
safe). To maximize long term use and minimize the need 
for maintenance, they should also be passive objects rather 
than electronically augmented objects (e.g., Bluetooth).  

REQ3: Sensing and Tracking of Physical Objects 
Our third requirement relates to input. To interact, a child 
must be able to move the physical objects and the system 
must sense and track these objects in real time. Sensing 
involves accurately determining object attributes such as 
individual object size, shape, identity, position, and 
orientation. Some symbols have similar shapes but have 
completely different meanings (e.g., letters: i/l, d/p/q/b 
numbers: 2/5, or music notes: half/quarter). The system 
should also be able to accurately sense and distinguish these 
symbols. These sensed object attributes are required so that 
the learning application can provide feedback. For example, 
the system can determine if the correct object was placed. 
These attributes are also required so that the system can use 
AR to augment physical objects with digital content (see 
REQ4). For example, to augment a physical object with a 
colour overlay, the system must be able to register the 
digital overlay to the physical object using sensed attributes 
of position, orientation, shape, size of the physical object.  

Tracking involves determining relevant attributes of an 
object over time (e.g., position, orientation). Moreover, the 
tracking should be persistent (i.e., maintained over time) so 
objects that are unchanged remain in the system, and those 
that are changed (e.g., adding, removing, relocating) can be 
detected without noticeable system lag. Since children often 
do not have precise motor control in putting multiple 
objects in a straight line, the system should be able to 
account for slightly haphazard placements. For example, it 
should be able to detect several letters placed in proximity 
(but not perfectly aligned) and group them into a word. 
Many early learning applications involve learning about 
relationships between multiple symbols (e.g., spelling, 
order). As such the system should be able to both sense and 
track multiple objects (typically 5-10) in real time.  

REQ4: Digital Augmentation of Physical Objects 
The fourth requirement is a key feature of AR. Digital 
content that augments a physical object must be displayed 
on the tablet registered to the location of the physical 
object. That is, digital overlays should be “attached” to 
physical objects and move with them. In the learning 
context, this requirement means that applications should be 

designed to reinforce the association between the digital 
and physical forms of representation. It is common in early 
learning to connect abstract and concrete representations 
[10]. For example, a digital overlay of the letter ‘a’ could be 
directly positioned on the tablet screen over the physical 
letter ‘a’ to show the association. The overlay could contain 
a dynamic colour, a pattern, a word containing ‘a’, a picture 
related to the letter ‘a’ or even a touch point, so that 
touching the digital ‘a’ creates the ‘a’ sound. For some of 
these features, it is important that the digital and the 
physical object have the same size, shape, position and 
orientation (i.e., are registered, as mentioned in REQ3) to 
show the association of the two. 

As objects are moved, the system should use the tracking 
information of the objects to properly align their digital 
augmented contents on the tablet display. That is, as objects 
are moved, their digital representations should move with 
them as a consistent overlay. Consideration must be given 
to the placement of overlays with other displayed digital 
content as objects and their augmented overlays relocate.  

THREE HYBRID TANGIBLE-AR TECHNIQUES 
In this section, we report our development and analysis of 
three techniques that can be used to create systems enabling 
tangible interactions with tablet-based augmented reality 
(AR), specifically targeted to early education apps. We 
chose these techniques because of their variety and 
technical maturity, and their use of readily available 
features of most tablets (camera and touchscreen) and craft 
materials (wood/paper/cardboard/plastic) (REQ1); their 
compatibility with easily customizable objects (REQ2); and 
their capability in providing AR experiences (REQ3&4). To 
facilitate our discussion, we abbreviate the techniques as: 
VMB (Visual Markers-based), CVML (Computer-Vision & 
Machine-Learning), and CT (Capacitive Touches). 

For each technique, we describe how it works, how we 
implemented it, and how it operates using a simple word 
spelling learning scenario as a theoretical use case scenario. 

Use Case Scenario 
The use case scenario is based on the PhonoBlocks system 
[3], a three-year-old tangible reading system (Figure 1). We 
chose it because it was one of the first tangible systems 
using physical letters as part of the learning activities that 
was shown to be effective, with significant learning gains in 
two case studies. As such it serves as a strong exemplar of a 
foundational interaction strategy for early childhood 
learning applications with physical symbols or shapes. 

In contrast to the original system using a tablet PC and a 
platform holding 3D plastic physical letters with embedded 
electronics, our envisioned tangible-AR system has only 
two main components: (a) a tablet with rear-facing camera 
and touchscreen running the education app; and (b) a set of 
physical objects in the shape of English letters, which are 
easily available in toy stores as alphabet sets, everyday 
stores as fridge magnets, or just cutouts from cardboard. 



The rules of the English alphabetic principles (e.g., 
blending consonant sounds, consonant-vowel-consonant 
patterns) are presented in the education app as activities 
such as lessons or mini-games, during which the user 
arranges the physical letters as instructed. The tablet then 
identifies these letters, tracks their locations, and augments 
them with overlays such as colour cues, as well as 
corresponding animations and sounds as rewards. 

Technique 1: Visual Markers-based 
The Visual Markers-based (VMB) technique is a common 
approach for tracking 2D objects, on which special patterns 
(markers) are placed for optical identification, often in real-
time. The markers can be simple colours [53], or more 
sophisticated ones like Fiducial markers [42], allowing 
tracking of orientations in addition to locations. 

Implementation 
To leverage the use of currently available physical letters 
that learners could easily get access to, we first purchased 
two sets of commonly-used physical letters (see Figure 2 
left for an example) from an online store (Alibaba). We 
then measured the size and shape of the letters and used 
them as baselines to create the initial design of the markers. 
We tested each letter one by one, and found that the 
detection results were unstable, particularly in various 
lighting conditions. Sometimes the system was not able to 
detect similar letter shapes such as t and f. We suspected 
that the results were caused by (1) the drawing lines in the 
markers were too thin, and (2) the letter size was too small, 
and thus it was difficult for the tablet camera to detect those 
lines from a distance, particularly in a dim environment.  

Therefore, we decided to fabricate larger-sized (around 
6.5*4.5*1cm) wooden letters ourselves using a laser cutter 
and iteratively tested the patterns with them (Figure 2 

right). For each iteration of the patterns, we glued them 
onto the letters and tested their reliability using the Vuforia 
plugin for Unity [51] (an AR software development kit for 
mobile devices, for its popularity and compatibility with 
Unity) and the education app running on a tablet. 

We also revised our marker design by increasing the stroke 
thickness of our drawing lines and printed out larger sized 
physical letters ourselves (Figure 3-2), yet the testing 
results with similar letters were still not very accurate. We 
then maximized the differences between each letter by 
adding more randomly distorted patterns (Figure 3-3) and 
used various patterns for each letter (Figure 3-4). This led 
the detection of the patterns to an acceptable level. 

Using It for Word Spelling Learning 
To use the education app implemented with VMB, the adult 
user, such as teacher or parent, has to acquire a set of 
English alphabet physical letters and a corresponding set of 
pre-defined patterns (shaped like the letters). The patterns 
are then attached to the letters to be recognized by the app. 

During a learning activity, the child user points the tablet’s 
camera to a surface on which they arrange the letters as 
instructed (Figure 4). The tablet then identifies these letters, 
track their locations, and augment them with digital content 
as an overlay in the live video feed captured by the camera. 

Technique 2: Computer-Vision & Machine-Learning 
The Computer-Vision & Machine-Learning (CVML) 
technique is based on the widely-used Optical Character 
Recognition (OCR) technique, where images of text are 
scanned and converted into machine-encoded text. This is 
mainly achieved by extracting features of the scanned 
images and comparing to a pre-existing feature model for 
the closest match. Some examples include Microsoft Lens 
and Adobe Scan, which are mobile apps converting pictures 
of documents into text files for reading and editing. 

   
Figure 1. The PhonoBlocks system on which our use case 
scenario is based, where physical objects in letter shapes light 
up according to English alphabetic principles, with digital 
representations displayed in a close-by monitor. 

   
Figure 2. A set of physical letters we purchased from an online 
store (Alibaba), size around 3.4*3.6*0.5 cm (Left); and a set of 
physical letters we fabricated ourselves, with markers glued 
onto them, size around 6.5*4.5*1cm (Right). 

1) 2) 3) 4)  

Figure 3. Iterations of the marker pattern for the letter 'a'. 1) 
first design, 2) thicker lines, 3) randomly distorted lines, and 
4) different pattern. 

 
Figure 4. A demo of the Visual Markers-based technique 
overlaying physical letters with their digital representations. 



Implementation 
We explored this technique by first using a few existing 
OCR tools, including open source OCR models and 
commercialized OCR tools, such as tesseract [56] and 
ABBYY OCR SDK [36], on the physical letter set we 
purchased (Figure 2-1). We took pictures of the letters and 
passed the images to the OCR tools for testing. However, 
performances were not satisfactory. We believed there were 
two main reasons. First, instead of 2D letters used in the 
traditional OCR tasks, our letters were 3D. Therefore, if the 
light is strong or the light condition changes, the resulting 
shadows will interfere with the detection of the letters. In 
most cases, training sets of previous OCR tools do not 
include letters with shadows. Second, the fonts of the 3D 
letter set we used were different from the standard fonts in 
newspapers and books. Therefore, it was difficult for 
previous models to perform satisfactorily. 

Thus, we decided to curate a training set based on our 
purchased letter set and built a machine-learning model 
from scratch. We curated the training set by processing all 
the pictures we took for the 26 characters, each 25 times 
under different lighting conditions. On each image, we 
performed image binarization by setting up a threshold of 
gray level to convert a color image into a black and white 
image. Next, we segmented the image based on connected 
component analysis to detect the boundary of each letter. 
Then, we rescaled each sub-image to the size of 50 × 50 
(width × height) for passing it to the Convolutional Neural 
Network (CNN) [27]. To avoid overfitting and improve the 
generalization of the deep learning model, we augmented 
the dataset by adding distortions and rotations to each 
image. This resulted in 280 variations per picture, that is 
7000 images per letter. We ended up having 182000 images 
in total in our training set, and 6325 images in our testing 
set. The procedure is described in Figure 5. 

To build the CNN model, we applied grid search to find the 
best hyperparameters including the number of kernels in 
each layer, kernel size, learning rate, and decay. Our CNN 
is composed of two convolutional layers and one fully 
connected layer (refer to ANNEX for details of the layers). 

We trained 50 epochs before testing the model and built 
five models based on the previous approach. The average 
accuracy of the model is 98.73%. When using all the five 
models together by averaging the results, the system could 
achieve 99.11% accuracy. Once the models were built, we 
transferred them to the Unity-based app to recognize the 
letters via the TensorFlowSharp wrapper API [23]. 

Considering computational resources, we down-sampled 
the video captured by a tablet (Samsung Galaxy Tab S4) to 
3 frames per second and input them to the trained CNN 
model after extracting and preprocessing the letters into 
segments. Each letter was recognized in approximately 0.02 
second, with the overlay generated in a similar time. 

Using It for Word Spelling Learning 
To use the education app implemented with CVML, the 
adult user, such as teacher or parent, only has to acquire a 
set of English alphabet physical letters. However, this set 
needs to be from the same font family used to curate the 
machine learning model. This issue can however be 
mitigated by curating the model with more typefaces that 
are commonly used or including a “training mode” in the 
app for the model to learn on-site. 

A learning activity with this technique is the same as that of 
VMB: the child user points the tablet’s camera to a surface 
on which they arrange the letters as instructed (Figure 6). 
The tablet then identifies these letters, tracks their physical 
locations, and augments them with digital content as an 
overlay in the live video feed captured by the camera. 

Technique 3: Capacitive Touches 
The Capacitive Touches (CT) technique builds on the fact 
that most tablets detect capacitive touches directly on the 
display. By arranging multiple conductive nibs (commonly 
used as the tip of a capacitive stylus), or more recently 3D 
printed conductive materials (e.g., [18, 24]) in a pre-defined 
configuration, it is possible for the tablet to recognize the 
arrangement and thus the object to which it is associated. 
Tiggly [47] and Marbotic [32] are two commercially 
available products using this approach associating different 
arrangements to objects that are shaped like letters. 
However, in their product description both products are 
designed to accept one letter at a time that acts like a stamp 
(this action also results in the person touching the letter to 

 
Figure 5. Procedure of binarization, segmentation, and 
augmentation of the letter pictures for training the 
Convolutional Neural Network (CNN). 

 
Figure 6. A demo of the CVML technique overlaying physical 
letters with their digital representations. 



provide the necessary electrical ground for the touches to be 
detected). We are instead interested in a system which 
simultaneously recognizes multiple letters (e.g., up to five) 
to support spelling of words, resulting in some letters not 
being touched and yet still be recognized and tracked. 

Implementation 
We based our own implementation of the CT approach on 
the Passive Untouched Capacitive Widgets (PUCs) 
developed by Voelker et al. [50]. In PUCs, two or more 
conductive round pads are connected using a conductive 
bridge, which allowed capacitive coupling to occur and 
form an electrical ground within the pads. This approach 
allows the object to be detected even when no one is 
touching it, and thus frees the person’s hands to handle 
other objects (letters). The authors further investigated the 
sizes of and the distances between the conductive pads on 
various devices and concluded that a diameter of 7mm (of 
each pad) and a distance of 20mm (between pads) to be the 
minimal for a 90-100% detection rate. These parameters 
formed the basis of our implementation. 

To comply with REQ1&2 of being accessible, we decided 
to fabricate the letters in-house using readily available 
equipment in the maker community, including 3D printers 
and laser cutters, so others can replicate our implementation 
relatively easily. After several design iterations from 
printing both the letter and conductive pads with a 3D 
printer (Figure 7 left) to offloading the letter fabrication to 
laser cutting/engraving (Figure 7 right), we developed a 
process of 3D printing the connected conductive pads, 
converting a font family into a template for laser cutting, 
and carving out the cavity to embed the conductive pads 
into the letters. In addition, we used transparent acrylic 
plastics for the letters to allow the tablet display to augment 
them from underneath. We also developed an application 
that recognized the letters based on the distance between 
the conductive pads (Figure 8). 

However, we soon realized that the recognition relies 
heavily on the hardware and filtering thresholds being used 
in the tablets to detect touches. When testing this technique 
on a Samsung Galaxy Tab A SM-T580, the conductive pads 
were detected as touches and the associated letters were 
recognized (Figure 8 left & right); but not on an Apple iPad 
Mini 2. The authors of the PUCs paper [50] also reported 
various detection behaviours and durations in their tested 
devices. We have yet to find a way for the letters to be 
consistently recognized across tablets without significant 
modifications to the letters (e.g., embedding electronics 
[49]) or the tablets (e.g., editing the filtering thresholds). 

Moreover, we faced two main challenges when adopting 
PUCs’ technique. First, as PUCs were only presented as 
widgets of generic shapes (bridge and ring), we had to 
design 26 different configurations to represent the 26 letters 
in the English alphabet. Second, a typical tablet can detect 
up to 10 touches simultaneously, meaning that if we want to 
have up to five letters detected, each letter can only contain 
two conductive pads, which happens to be the minimal 
number for the app to use distance as an identifying feature 
(and still without the orientation information). We also had 
to limit where each letter could be (shown as white 
bounding boxes in Figure 8) so touches from different 
letters would not interfere with each other. 

Using It for English Spelling Learning 
To use the education app implemented with CT, the adult 
user, such as teacher or parent, needs to acquire a set of 
transparent English alphabet physical letters, conductive 
pads, and materials connecting the pads (we used copper 
tapes found in hardware stores). The conductive pads are 
then attached to the letters and connected by the copper tape 
according to a pre-defined set of configurations (distances). 

During a learning activity, the child user puts the letters on 
the surface of the tablet on which they arrange the letters as 
instructed. The tablet then identifies these letters, tracks 
their physical locations, and augments them with digital 
content. But instead of as an overlay, the digital content will 
be displayed underneath the letters. This is the reason why 
the letters should be transparent so content can be seen. 

COMPARATIVE ANALYSIS: BENEFITS & LIMITATIONS 
We present our comparative analysis of the benefits and 
limitations of each technique relative to our requirements 
for a valid system. For each requirement, two experts in 
tangibles and mobile development rated each technique 
using a three-level scale (H=high compliance to 
requirements, M=medium, L=low). Through discussion the 
raters reached agreement on all items. We also provide 
details on how well each technique fulfills the requirements 
based on what we learned from our implementations. Our 
accuracy and lag testing of each proof-of-concept system 
was done using a “perceivable latency” criterion (e.g., [26]) 
and we acknowledge that it may be tablet-specific, in 
particular for lag (the time between moving a letter and 
perceiving its digital representation move on the display).  

   
Figure 7. Iterations of capacitive letters (back side of 'a' and 
'b'). 3D printed letters and pads (Left), laser-cut & engraved 
letters and 3D printed pads (Right). 

   
Figure 8. An app recognizing the letters when put on the 
displayed slots. 3D printed letters & pads (Left), laser-cut 
letters & 3D printed pads connected by copper tapes (Right). 



REQ1: Readily Available Physical Objects 
All techniques required no more than the tablet and the 
letter set to function, as compared to commercial products 
such as Osmo [40], where a mirror is needed for the front-
facing camera to see the physical objects; and to research 
prototypes such as Phonoblocks [3], where a platform with 
pogo pins is needed to detect the physical letters. 

Both VMB and CVML used computational algorithms that 
were hardware independent to recognize the physical 
objects, and thus available for both iOS and Android. On 
the other hand, CT relied on the capacitive sensing 
hardware and the way the operating system registers 
touches, which from our testing was not viable in all tablets. 

CVML used physical objects as they were, whereas both 
VMB and CT required modifications for recognition. VMB 
required a specific set of patterns attached to the objects, 
but was easier than attaching and connecting conductive 
pads to the objects at specific distances in CT. 

To sum up, CVML fulfilled REQ1 the best because of its 
ease of acquisition of all the components, followed by 
VMB. CT falls short here as it was not viable in all tablets. 

REQ2: Hands-On Interaction with Physical Objects 
We managed to purchase/fabricate all the physical objects 
in our implementations, thus were able to control their 
shapes for matching representation, as well as their sizes for 
easy handling. CVML recognized physical objects as they 
were, hence posed no size constraints as long as they were 
visibly distinguishable, and thus made them easy to handle. 
On the other hand, from our testing, there was a minimum 
size limit on the patterns in VMB and the distances between 
connected capacitive pads in CT, which was about 2 times 
larger than the expected 1-2.5 cm height and width. 

As CVML utilizes physical objects without modification, 
the objects are thus as durable as their composite material. 
The modifications required for both VMB and CT might 
wear over time. However, VMB used stick-on markers that 
could easily be replaced. In contrast, CT required 
reapplying and reconnecting capacitive pads, making it the 
least durable and hardest for maintenance. 

To sum up, similar to REQ1, CVML fulfilled REQ2 the 
best because of its use of non-modified physical objects, 
followed by VMB. CT fell short due to the extra procedures 
in making the objects conductive. 

REQ3: Sensing and Tracking of Physical Objects 
Both VMB and CVML could identify multiple objects (5-
10, as patterns in VMB and as islands in CVML) in real-
time. In contrast, due to the limit of 10 capacitive touch 
points detection in most tablets, CT was not able to identify 
more than 3 objects in arbitrary orientations. 

Nevertheless, CT used a simple mapping between touch 
configurations and objects, so the recognition had no 
perceivable lag. As each object in VMB was recognized via 
its pattern with multiple features, its presence and position 

were tracked with a slight lag (within seconds). CVML 
required a separate step to determine the location of 
individual objects after recognition, thus resulted in an 
observable lag in our testing (approximately 1-2 seconds). 
Its tracking was also affected by occlusion. While we 
acknowledge the lags are tablet-specific, and will likely be 
improved with technologies, the relative time difference in 
recognition and tracking will remain similar. 

Both VMB and CVML used images taken by the built-in 
camera as input for object recognition and were sensitive to 
poor lighting conditions (sensing and tracking accuracy 
decreases). VMB performed slightly better due to the use of 
multiple features being printed in a discernable manner, 
while CVML suffered from arbitrary shadows due to light 
source variations and occlusions. CT was unaffected by any 
lighting condition as it used touch points as input. 

Both VMB and CVML recognized objects individually 
along with their physical location relative to each other, 
hence the order of the objects could be deduced. However, 
as there was no distinction between touch points; objects in 
CT had to be placed in sufficient separation for the software 
to correctly isolate them. In comparison, many tangible 
learning systems utilize physical constraints to limit how 
objects are placed (e.g., sides must match in Tiblo [41], 
letters must fit in a platform in PhonoBlocks [3]). 

As an additional observation, all techniques recognized 
objects without continuous touch from a hand. However, in 
CT the touch points eventually disappeared, as explained as 
adaption of the capacitive touch filtering algorithms in [50], 
and required a touch to reappear. 

To sum up, VMB and CVML had similar strengths in 
multi-object sensing and tracking but were not as 
responsive and as resilient against poor light conditions and 
occlusions as compared to CT, resulting in varying degrees 
of fulfillment of REQ3. 

REQ4: Digital Augmentation of Physical Objects 
All techniques were capable of recognizing objects 
individually and in real time, displaying their digital 
representations (e.g., images with same outlook, associate 
sounds) within the app; and in case of representations 
visually over (in VMB/CVML) or under (in CT) them with 
proper alignments. 

To sum up, as the digital representations were controlled by 
the system, all techniques provided support for effective 
learning through AR, hence all fulfilled REQ4 equally well. 

DISCUSSION 
Table 1 summarizes the comparison of the three techniques 
we implemented, with detailed breakdowns under each 
requirement. The breakdowns were created by an expert in 
tangibles and mobile development using a High-Medium-
Low scale and were verified by a second expert not 
involved in building the prototypes. Overall, we found that 
they all fulfilled the requirements to varying degrees, 



resulting in trade-offs that must be considered when 
developers choose one technique over the other. There is no 
one best solution at this moment in time, but we believe a 
CVML-based implementation is the most promising one. 

Trade-offs 
In terms of recognizing symbols, CT was the simplest to 
implement as it was a direct conversion from touch 
configurations (distances) to symbols, whereas VMB 
required a dataset of patterns and CVML required a 
learning model. However, CT required the most effort to 
fabricate the physical objects (attaching conductive pads to 
laser-cut/3D-printed objects), followed by VMB which 
required printing out pre-made patterns. CVML was the 
easiest as it required no fabrication, since the objects could 
be purchased and used without any modification. 

In terms of multiple sensing – that is, the maximum number 
of objects detected and tracked simultaneously – CVML 
could, in theory, sense any number as long as the objects 
were visually separated from each other. Currently, the 
Vuforia SDK that we used for VMB had a limit of five 
simultaneous active targets. While we expect the limit will 
increase as the SDK improves, we do not anticipate it to be 
more than that of CVML, due to the need of multiple 
feature points for each pattern to be processed. As CT relied 
on the number of maximum touches detected by the tablet, 
we believe it will remain sensing the lowest number of 
objects amongst all three techniques. However, CT required 
the least amount of sensing time, and was impervious to 
varying or poor lighting conditions. In contrast, both VMB 
and CVML’s accuracy degraded when the patterns were not 
clear, or the shadows were too prominent. 

In terms of augmenting the physical objects, both VMB and 
CVML functioned very similarly: objects were placed on a 
surface with the tablet held above (or leveled if the objects 
are magnetically attached to a vertical surface), digital 
content was shown on the tablet superimposing the live 
video feed from the built-in camera. For the camera to 
capture all the objects, the tablet had to be held steadily at 
an adequate distance from the surface, which might cause 
fatigue and might not be easy for young children when their 
motor skills are developing. To address this issue, we have 
explored using a tablet stand for stability and/or had one 
person holding the tablet, while another worked with the 
letters [16]. In contrast, with CT, objects were placed on the 
tablet, with digital content shown under/around them, thus 
posing little space constraint. The tablet could also be 
placed on a surface to reduce fatigue. 

Recommended Implementation 
Based on the results of our comparative analysis, we 
recommend that at this time the best technique for HCI 
researchers and educational developers to use is CVML. In 
this case, once deployed, an adult user would purchase a 
letter set, regardless of what font it is in, and run the app in 
a “training mode” which guides them through the building 
process of the learning model by capturing multiple images 
of the letters (as simple as taking multiple photos), or 
download a pre-trained model that recognizes the font. The 
education app can then be passed to the child user to be 
used as designed without any further setting up. 

As mentioned, we used the English language learning 
scenario as a foundational interaction strategy. However, 
our requirements and the techniques we explored are 
general enough to accommodate many other symbols. By 
expanding the physical objects set to include symbols from 
other areas such as arithmetic, music, and geometry, 
children would be able to enjoy a wide range of hands-on 
learning experience in topics and interactivity. 

Limitations & Future Work 
During our development and analysis of the three tangible-
AR techniques we identified benefits and limitations, as 
well as trade-offs. Some of these findings arose from 
current technological constraints, such as sophistication of 
learning models (and quantity of available data to train 
one), touch point detection; or our own knowledge deficits 
in fabrication and programming, such as working with 
conductive materials and implementing more efficient 
sensing and tracking algorithms.  

As knowledge and technologies advance, researchers can 
take advantage of improvements and create systems that 
can better meet the requirements listed above. One 
promising direction is the CVML technique, which can 
recognize unmodified physical objects. The biggest 
challenge, however, is to make CVML less prone to poor 
light conditions (e.g., varying light sources) and faster in 
tracking objects. These challenges could be addressed by 
improvements in camera sensors and algorithm efficiency. 

Requirements VMB CVML CT 
REQ1: Readily Available 
Composing components High High High 
Hardware independence High High Low 

Easy of object acquisition  Medium High Low 
REQ2: Repeated Hands-On Use 

Sizing freedom Medium High Medium 
Ease of object maintenance Medium High Low 

REQ3: Persistent Multi-Object Sensing & Tracking 
Multiple sensing High High Low 
Recognition simplicity Medium Low High 

Environmental resilience Medium Low High 
Object placement resilience High High Medium 

Sensing persistence High High Medium 
REQ4: Associated Augmentation 
Matching outlook High High High 

Support of alignment High High High 

Table 1. Tabular comparison of the techniques in terms of the 
requirements, shaded for ease of reference. 



Moreover, over time there might be new techniques to 
sense and track physical objects. However, it is likely that 
they will be variations of those we have listed. Our goal 
was to introduce these techniques and show their feasibility 
to educational developers and HCI researchers, so that they 
can then implement and conduct further research in the area 
of early childhood learning; using our requirements to 
evaluate new techniques and select the best for the job. 
With this platform they will have access to the core 
functionality required to create diverse hybrid tangible-AR 
systems, and be able to conduct more rigorous studies on 
the effectiveness of such systems with child learners. 

GENERALIZATION: NUMBER USE CASE  
We used language learning and a lower-case Latin letter set 
to illustrate how our technology platform can be 
implemented through three selected hybrid tangible-AR 
techniques. To demonstrate its generalizability, we provide 
a second use case using Arabic numbers (i.e., 0-9), which 
can be accommodated by all of the three techniques 
(REQ1&2). This is because the core strategy of VMB and 
CVML was to recognize visual patterns and CT to 
recognize configurations of conductive materials. 
Specifically, we demonstrate generalizability through 
sensing, tracking, and augmenting number objects using the 
CVML technique. In Figure 9 we show the most demanding 
test case in which multiple physical numbers were 
duplicated exactly in their position, orientation, and size; 
and augmented with a precisely registered colour overlay.  

In order to sense and track numbers we adapted the CVML 
technique using transfer learning to train the CNN model to 
recognize the new number objects [39]. Transfer learning is 
a machine learning technique in which information from 
previously learned tasks is transferred to the task of 
learning a new, similar task. By using existing information 
from a previous task, the efficiency of learning a new 
symbol set is significantly improved compared to the initial 
work to train the system. To train our CVML program to 
sense and track number objects, we added pictures of the 
number set to the existing model as a new task (refer to 
ANNEX for details). To use our platform to augment 
numbers, we simply used our existing code without 
modification, noting that developers can adapt the platform 
to use other forms of overlays besides number colour. In 
summary, we demonstrate the ease of generalizability of the 
CVML technique to sense, track and augment numbers, 
another reason we recommend this approach. 

CONCLUSION 
In this paper, we demonstrated and analyzed three 
techniques that enable physical learning materials to be 
integrated with tablet-based applications for early childhood 
education using augmented reality. To inform our 
implementations, we established four requirements from 
analyses of existing systems and our own previous work in 
the field of tangible computing for early childhood 
education. Our analysis focused on comparing how each 
approach met these requirements, explored through a use 
case derived from a previously validated tangible reading 
system. Results from this analysis revealed current 
limitations, trade-offs, as well as opportunities for further 
development and deployment. Lastly, we demonstrated 
generalizability of our recommended CVML technique 
through a second use case involving 3D numbers, which 
could be used to create arithmetic learning applications. 

This work moves us one step closer to a development 
platform that enables educational developers, and HCI and 
learning sciences researchers to create scalable hybrid 
tangible-AR applications for early childhood education, 
with more complex, creative scenarios and use cases, as 
well as real world testing in effectiveness and robustness. 

ANNEX 
We include details of our CNN model in the CVML 
technique for replicability. The CNN model is composed of 
two convolutional layers and one fully connected layer. The 
first convolutional layer filters the 50 × 50 × 1 input 
features with 64 kernels of size 3 × 3 × 1 and a stride of 1. 
The second convolutional layer uses 128 kernels of size 3 × 
3 × 64. The third convolutional layer uses 256 kernels of 
size 3 × 3 × 128. We used max pooling (2 × 2) with a stride 
of 2 for the outputs of convolutional layers, and added one 
dropout layer after each convolutional layer, with a dropout 
rate of 0.4. The fully connected layer, connected to the third 
convolutional layer, is composed of 1024 neurons. The 
output layer is composed of 26 neurons (one per letter). We 
used the ReLU non-linearity activation function [39] for all 
convolutional layers and the fully connected layer. For the 
output layer, we used softmax activation to predict the 
category. All the weights were initialized based on a Xavier 
uniform. The CNN was trained using the Adam optimizer 
with a batch size of 64 examples, learning rate of 1×10-4. 

To train the existing CNN model to recognize numbers (our 
second use case) using transfer learning, we created a 
training set for detecting number by making a small video 
(approx. 15s) for each of the numbers (0-9) and extracting 
images from it (or taking snapshots). We then froze the last 
layer of the existing model (which classifies the images into 
26 letters, i.e., 26 output neuron) and replaced it with the 10 
output neuron. This process is true for any kind of shapes 
(e.g., other letters, arithmetic symbols, music notes). 
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Figure 9. A demo of the CVML technique digitally 
augmenting the numbers exactly to their shapes. 



SELECTION AND PARTICIPATION OF CHILDREN 
No children participated in this work. 
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